An HSUS Report: The Welfare of Farmed Fish at Slaughter

Stephanie Yue, Ph.D.*

Abstract

Approximately 1.3 billion fish are raised in off-shore and land-based aquaculture systems in the United States each year and slaughtered for food. Numerous methods are used to stun and/or kill farmed fish, but scientific research has found most to be inhumane. Methods such as asphyxiation on ice or air, carbon-dioxide stunning, gill-cutting (exsanguination) without prior stunning, and live chilling do not cause immediate insensibility, and studies on the physiological and behavioral responses of fish show that these slaughter practices are likely to cause suffering as animals respond with highly aversive behavior. Both percussive and electrical stunning and killing systems, if applied correctly, can induce immediate and irreversible insensibility, thereby subjecting the animals to less pain, stress, and undue suffering as compared with other methods. At present, however, no slaughter technique is without welfare problems.

Introduction

The fish farming industry has grown at a rate of approximately 8% per year since the mid-1980s. Globally, the average annual per-capita fish and fishery products consumption was 16.4 kg (36.2 lb) from 2003 to 2005 and could increase to as much as 22.5 kg (49.6 lb) by 2030. As consumption has outpaced the growth of the world’s human population since the 1960s, the world’s fisheries are unlikely to satisfy the marketplace. As such, “the seafood industry is beginning to shift from wild harvest to aquaculture, the production of aquatic plants and animals under grower-controlled conditions.”

With the expanding aquaculture industry, there has been greater interest in farmed fish welfare and an increased awareness of the need for better management and production practices, including at slaughter. The general challenge of addressing the well-being of farmed fish was elucidated by Tore Håstein of the National Veterinary Institute in Oslo, Norway and colleagues in an article published by the World Organisation for Animal Health (OIE), an intergovernmental body with 172 member countries: “One practical problem for science is how to deal with the large numbers of individuals handled in aquaculture, as the welfare of the individual animal must be protected and monitored.”

Examining several slaughter techniques of farmed fish, scientific research has established that many methods presently employed are inhumane, including gill-cutting without prior stunning, asphyxiation in air or on ice, carbon-dioxide stunning, and live chilling. Both percussive and electrical stun/kill systems provide the fewest challenges to welfare of the methods available to date. If applied correctly, these systems can induce immediate and irreversible unconsciousness and, therefore, insensibility to pain, stress, and undue suffering.

* Dr. Yue serves as a post-doctoral fellow at the University of Guelph, where she is involved in teaching and graduate program development with its Animal Behaviour and Welfare Group.

† For the purpose of this report, “aquaculture,” “aquaculture production,” and “aquaculture industry” refer exclusively to the farming of fish, not aquatic plants and other aquatic animals.
Legislative Protection for Fish at Slaughter

Although the slaughter of mammals and birds for human consumption is regulated by law and these laws are promulgated in many countries, including all member countries of the European Union, most do not yet extend this protection to farmed fish. According to Bert Lambooij, a researcher in the Animal Science Group at Wageningen UR, and his colleagues:

The concept of animal welfare, which is generally accepted for mammals, is a relatively new concept for fish. It is likely that conventional harvest adversely affects the welfare of fish, particularly when the similarities in the basic structure of neurons and neuronal biochemistry to that of mammals, and the similarities in stress responses and behaviour to that of higher vertebrates are considered.

Steve Kestin, a researcher with the department of Clinical Veterinary Science at University of Bristol, and his colleagues posited that “[s]ince there is no reason to suppose that fish are incapable of feeling pain and distress there is a good argument for affording fish similar protection to that given to higher vertebrates.”

Indeed, although general sensitivity to fish welfare is not as developed as it is for avian or mammalian animals, concern for the well-being of aquatic animals is gaining both scientific and citizen interest. In the United Kingdom, for example, where concern for farm animal welfare is more widespread than in many other developed countries, as evidenced by the prevalence of pro-farm animal legislation, policy, and consumer interest in welfare-friendly agricultural practices, the well-being of fish is now of such importance that some U.K. retailers are anticipating the inclusion of humane fish slaughter into their purchasing policies.

Background on Farmed Fish Slaughter

The slaughter of farmed fish was briefly explained by Jeff Lines, leader of aquaculture engineering research at the Silsoe Research Institute, and his colleagues:

Slaughter is generally a two-stage process. The animal is first stunned to make it insensible to pain. Death then is induced by various methods that include bleeding, stopping the heart, or preventing access to oxygen. These two stages can occur together but where they are distinct operations, the stun-to-kill time must be minimized to prevent any recovery of consciousness before death occurs.

The Farm Animal Welfare Council (FAWC), an organization established to advise the U.K. government on issues regarding the welfare of farm animals, recognized many fish slaughter methods as problematic on welfare grounds and called for a search to develop humane alternatives. Håstein echoed FAWC’s assessment and asserted that many fish slaughter methods are “appalling from an animal welfare point of view.” Concluded the Scientific Panel of Animal Health and Welfare of the European Food Safety Authority (EFSA): “Many existing commercial killing methods expose fish to substantial suffering over a prolonged period of time. For some species, existing methods, whilst capable of killing fish humanely, are not doing so because operators don’t have the knowledge to evaluate them.”

Acceptable slaughter methods must render the animal insensible immediately and should be carried out without causing avoidable pain or suffering. According to the Humane Slaughter Association (HSA), the ideal slaughter system for fish encompass methods that do not remove the animals from water; where this cannot be avoided, fish should not be out of water for more than 15 seconds. After this amount of time, the animals “show aversive behaviour.”

1 “Council Directive 98/58/EC provides the general framework for farm animal welfare and applies to all animals (including fish, reptiles and amphibians) kept for food, wool, skin, fur or other farming purposes.”

2 The HSA is a U.K. charity that was selected by the European Commission to organize and present a co-sponsored “International Training Workshop on Welfare Standards Concerning the Stunning and Killing of Animals in Slaughterhouses or for Disease Control” in 2006.
Methods of Assessing Insensibility

A method to assess consciousness in fish is monitoring the eye roll reflex, movement of the eyes when fish are rolled from side to side. When conscious, fish will attempt to remain upright when rolled to the side and their eyes will roll relative to the head. However, when unconscious, the eyes will remain fixed relative to the head, showing no movement at all. Hence, it is accepted that insensibility is achieved in the absence of the eye roll reflex.37

Other acceptable non-invasive means of assessing unconsciousness include monitoring:

- self-initiated behavior, such as ability to swim normally and maintain equilibrium;
- response to stimuli, such as escape and avoidance behavior to catching or handling, pin prick, and electric stimuli; and
- clinical reflexes, such as rhythmic opercular movement indicative of breathing.38

These criteria are commonly used by researchers as indicators of insensibility and can easily and rapidly be employed to examine large numbers of fish, which enables producers to assess the general efficacy and level of welfare at slaughter operations.39 However, for some methods of slaughter, behavioral indicators must be used with caution, as lack of self-initiated behavior, for example, does not necessarily indicate unconsciousness as measured by other methods.40

Some researchers have measured insensibility by use of electrocardiogram (ECG) techniques,41,42 as ECG recordings that show ventricular irregularities, indicative of cardiac dysfunction, effectively monitor a fish’s internal state. Electroencephalograms (EEGs) can also assess unconsciousness. Similarities in the basic neuronal biochemistry of fish with other vertebrates, including humans, support the assumption that EEG activity patterns seen in humans and other vertebrates can be used to determine when fish are rendered unconscious.43 For example, studies of electrical stunning have found that a proper electric stun can induce epileptiform activity in the brain, indicating unconsciousness.44 Indeed, behavioral parameters have been shown to be consistent with the EEG measurement technique in eels.45 Dave Robb, a researcher at the Division of Food Animal Science at the University of Bristol and EWOS Innovation, and colleagues state:

"[Electroencephalography]… investigates the patency of a pathway in the brain which responds to a flash of light that stimulates the retina of the eye of an animal. When the patency of the pathway is abolished, the visual evoked responses (VERs) are absent and the animal is regarded as unresponsive to a visual stimulus. Because the pathway is simple, it is one of the last responses to an external stimulus to be lost before brain death and is thus a good indicator of the onset of profound brain failure."46

Many of these indicators are interrelated and synonymous with a loss of consciousness and therefore insensibility, and experimental studies often measure one or some combination of these parameters.

Farmed Fish Slaughter Methods

Addressing the welfare of farmed fish is markedly more difficult than assessing production practices and systems for other farm animals. Hästein et al. identifies some of the challenges:

In contrast to terrestrial production animals, aquatic animals encompass extremely diverse, divergent and distantly related taxonomic groups, of greatly varied phylogenetic ages and linkages. They range from highly developed marine mammals to lower invertebrates, all with very different anatomies, physiologies and behaviour. For example, the evolutionary history of finfish stretches back over 450 million years…and more than 28,500 species currently exist…."47
However, despite variances in responses and levels of aversion among fish species, scientific inquiry has successfully made determinations regarding various slaughter methods that are applicable across a variety of fish species. According to the HSA: “Traditionally, the method of [fish] slaughter was chosen for its ease of application and cost reduction. Most such traditional methods of killing fish such as live gutting, suffocation (in air or on ice), hypothermia and carbon dioxide narcosis are now considered inhumane as they cause the fish to suffer unnecessary stress and pain.” Indeed, various methods are used to stun and slaughter fish with differing impacts on the animal’s welfare. Following is an assessment on the most common techniques.

Asphyxiation in Air

Asphyxiation in air involves the removal of fish from water, whereby the animals suffocate and die. This method is extremely aversive to fish, who often show violent escape behaviors accompanied by maximum stress responses. When fish are taken out of water, their gills collapse, preventing oxygen exchange with their environment. The time to death in air is affected by the ambient temperature; for example, rainbow trout die after 2.6 minutes at 20°C (68°F), 3 minutes at 14°C (57.2°F), and 9.6 minutes at 2°C (35.6°F). As fish are poikilotherms, animals whose body temperature fluctuates according to the temperature of the environment, reducing the temperature of their bodies typically prolongs the time to anoxia (a condition in which the tissues of the body do not receive adequate amounts of oxygen) and, therefore, the time to insensibility, lengthening the period of distress or suffering.

Asphyxiation on Ice and Live Chilling

Fish may also be asphyxiated by immersing them in a slurry mixture of ice and water or packed live in ice flakes. This method is commonly used on many different farmed species such as rainbow trout, gilthead sea bream, sea bass, barramundi, and channel catfish, even though temperate species take longer to lose brain function when asphyxiated in ice compared to in the air. There is no clear evidence on how aversive it is to a fish to be immersed in ice, though it has been hypothesized that this treatment could be painful. Because intense, rapid cooling causes muscle paralysis, behavioral indices used to measure aversion cannot be used; however, rapid cooling has been clearly shown to initiate a stress response.

Similar to the method of asphyxiation on ice, live chilling involves immersing fish in chilled water, with the intentions of causing fish either to become torpid (motionless) or stunned before slaughter. This method of cooling muscles immobilizes the animals so they can be more easily handled. However, cold shock is unacceptable as it prolongs the period of consciousness (i.e., the time to unconsciousness increases with decreasing temperatures) and does not reduce the animals' ability to feel pain. Fish may be exposed to water of approximately 1°C (33.8°F) or colder. The chilled water often causes the fish to become sedated or immobile, but may not render them insensible to pain and the effects are reversible if transferred back to normal water temperatures.

Live chilling is considered by the aquaculture industry to offer benefits to carcass quality since reducing muscle temperature close to 0°C (32°F) eliminates significant thermal energy that would otherwise begin the muscle degradation process that begins soon after death and also increases both the time for onset of rigor mortis and the resolution of rigor. That is, fish whose body temperature is significantly lowered begin normal post-death decomposition at a later time.

Rapid drops in body temperature can be very stressful to fish. For those who are transferred from warm water, the temperature reduction and impacts on welfare may be more dramatic, as is the case with some European Atlantic salmon farms where fish are taken from seawater of temperatures as high as 15°C (59°F). Researchers found that live chilling of salmon from warm seawater to 1°C (33.8°F) resulted in elevated levels of cortisol indicating that this treatment is stressful.

A research team led by Bjorn Roth from the University of Bergen, Norway, observed chilled fish exhibiting non-uniform behavior upon exit of the chilling tank. Although some fish were motionless, others showed...
degrees of physical activity, and all showed signs of consciousness including eye-rolling and respiratory activity upon removal from the chilling tank, as well as immediate responses such as writhing and thrashing during gill-cutting for exsanguination. The team concluded that live chilling followed by exsanguination of fish appears to be highly stressful and should not be practiced as the animals are not properly stunned.

In a study of the welfare aspects of live chilling and freezing of farmed eels, Elbert Lambooij of the Institute for Animal Science and Health in the Netherlands, and colleagues found that at least 5% of fish were not successfully stunned when transferred from 18ºC (64.4ºF) water to ice water at an average temperature of 0.2ºC (32.36ºF) and were not effectively stunned until they were subsequently transferred to cold brine at -18ºC (-0.4ºF). The researchers, however, do not recommend this method as unconsciousness is not induced for nearly 30 seconds.

Carbon-Dioxide Stunning

Commonly used as a stunning method, water saturation with carbon dioxide creates an acidic and hypoxic environment that eventually leads to narcosis. In response to this treatment, fish have been reported to show aversive behavior and flight reactions. During the initial period of narcosis, fish exhibit intensely aversive behavior for a minimum of approximately 30 seconds. Robb et al. reported that salmon react with behavior including vigorous head and tail shaking for approximately 2 minutes after being immersed in carbon dioxide-saturated water although some salmon have been recorded to show this aversive behavior for up to 9 minutes. It has been reported that the high amount of activity seen during carbon-dioxide stunning routinely causes gill hemorrhaging.

In addition to these behavioral responses, some fish such as rainbow trout, carp, and eels also increase mucus production, a possible sign of stress, during carbon-dioxide narcosis. In some cases, it has been observed that fish will demonstrate a “coughing” response as a means to clear excess mucus from their gills. Loss of brain function by this method has been found to take 4.7 minutes for trout and 6.1 minutes for salmon.

Although considered an unacceptable method of slaughter by the HSA, if carbon-dioxide stunning is used, well-run systems leave fish in carbon dioxide-saturated water for a minimum of ten minutes in order to induce unconsciousness. Despite this, however, it has been reported that fish are customarily removed once movement stops, typically after 2-3 minutes. Thus, there is a concern that fish may be rendered immobile by the carbon dioxide before completely losing consciousness and may be bled or eviscerated while still sensible.

Aversive behavior to carbon-dioxide stunning has been reported to cause injury and scale loss, and there is no evidence proving that carbon dioxide has any analgesic or anaesthetic effects other than narcosis, which does not imply any reduction in pain or fear.

Research on alternative, less aversive gases that could be used for stunning fish in the future has the potential to greatly improve the welfare of fish at slaughter. Carmel Wills, Ph.D. candidate at the School of Food Science and Environmental Health, Dublin Institute of Technology, and colleagues investigated the use of nitrogen gas to stun rainbow trout and found this method did not cause the strong frenzied activity as seen in fish immersed in carbon dioxide-saturated water, but full understanding of and further research into gas stunning methods are as of yet inconclusive.

Live Chilling with Carbon-Dioxide Stunning

Live chilling at temperatures customarily used by the aquaculture industry may immobilize fish, yet may not induce unconsciousness. Thus, live-chilled fish may be fully conscious when their gills are cut. A dual method has been introduced whereby fish such as salmon and trout are live-chilled in 1ºC (33.8ºF) water to immobilize them and then stunned or killed using carbon dioxide.
As carbon dioxide-saturated water causes extreme aversive behavior, chilling the animals first reduces negative reactions by the animals when they are exposed to the gas. As such, this dual method may be considered by some to be a more humane way to induce the desired state of hypercapnia in fish before gill-bleeding. Low temperatures, however, are thought to slow the onset of unconsciousness, giving rise to concerns that chilling may also prolong the negative effects of carbon dioxide. As such, although live chilling does to some extent reduce the hyperactive response to carbon dioxide, it may merely be a function of cold immobilization.

However, in one particular investigation, researchers found that some live-chilled fish, prior to transfer to carbon dioxide-saturated water, recovered from their immobilized state, regained movement, and struggled to physical exhaustion. Similarly, Roth et al. concluded that commercial use of live chilling in combination with high levels of carbon dioxide does not sufficiently stun salmon before slaughter.

Bleeding without Prior Stunning

This method typically entails removing fully conscious fish from water, manually restraining them, inserting a sharp knife under their operculae, and severing all four gill arches on one side of their head. Alternatively, the heart may be pierced, isthmus cut with a knife or the blood vessels in the tail severed. Fish reportedly struggle intensely for an average of four minutes during this process; Lambooij et al. found that catfish responded to noxious stimuli for a minimum of 15 minutes after gill-cutting.

The Scientific Panel of Animal Health and Welfare of the European Food Safety Authority and others have stated that exsanguination without stunning is inhumane and should not be used for slaughter. Although this method has been used commercially in the United Kingdom and in Norway, behavioral and brain function measures have indeed shown that it is a slow method of slaughter as fish are not rendered immediately insensible.

Percussive Stunning

With percussive stunning, fish are rapidly struck on the head, resulting in violent movement of the brain within the skull, causing concussion and cerebral dysfunction. This method renders fish unconscious immediately and irreversibly if sufficient force is applied to the correct part of the head. In the occasion that a fish regains consciousness due to an improper stun or there is any uncertainty whether the stun was effective, the fish should be re-stunned immediately.

Manual percussive stunning presents challenges including operator fatigue that reduces accuracy and impairs welfare. Determined Håstein et al.: “Although percussive stunning by a hand-held club is useful from a technical point of view, the method must become automated if it is to be useful for slaughter under industrial conditions.” Alternative methods to traditional clubbing by slaughter workers have been explored, including a pneumatic gun originally developed for the stunning of small mammals, and these are both accurate and able to deliver the required velocity.

Presently, use of semiautomatic percussive stunning devices is becoming more widespread within the salmon industry and is the most common method used in both Scotland and Chile. With this system, fish are removed from the water and manually guided by operators into the opening channel of the device. When their snout touches a trigger, a quick, hard blow is delivered to the head.

Innovations are in development that remove the human handling aspect and involve methods that do not require removing fish from water at all. New designs encourage fish to swim along the apparatus, which would improve animal welfare by reducing if not eliminating stress caused by handling.

In their study of different slaughter methods, investigators led by Hans van de Vis, researcher at Wageningen University and Research Centre, noted that after percussive stunning, fish immediately lost the ability to perform self-initiated behavior and unconsciousness occurred after an average of 18 seconds. The researchers...
Posited that the EEG electrodes recording brain activity may have hindered correct application of the blow, preventing immediate loss of brain function. Another research team found that when sufficient force is properly applied, the percussive stunning system renders salmon immediately insensible with a single percussive stroke to the head.

Automatic percussive stunning systems have been used in the slaughter of trout, salmon, turbot, and catfish. Lambooj et al. concluded through EEG readings that captive bolt stunning almost certainly eliminates pain perception and is therefore an effective and humane method of slaughter.

Electrical Stunning and Killing

Stunning by use of electricity is known as electronarcosis, whereas killing by using electricity is known as electrocution. Depending on the electrical parameters, such as voltage, frequency and duration, either outcome can be induced. Electric stunning is reversible as normal brain function is disrupted for a short period only; hence electronarcosis must be immediately followed by bleeding before the animal can recover from the stun and regain consciousness. Electrocutation, on the other hand, completely destroys brain function and therefore renders the animal unconscious while stopping the breathing reflex from functioning.

In a study of electrical stunning of rainbow trout, investigators found that while increasing the waveform frequency decreased the stun duration, increasing current magnitude and application time increased the time that animals remained effectively stunned. Indeed, fish could be killed when higher currents were used. Research has also shown that low currents resulted in fish being improperly stunned, showing physiological and behavioral signs of consciousness. Similarly, if the stun duration is too short, fish can quickly regain consciousness. Therefore, along with water factors, such as conductivity and temperature, each of these three electrical parameters must be appropriately managed in order to ensure a proper stun.

When fish are subjected to a poor stun (due to poor management or equipment malfunction) and rendered paralyzed instead of insensible, they cannot express pain or show avoidance behavior and risk being bled while conscious. The EFSA warns that electrical systems can cause suffering if not properly applied. When properly applied, however, a good stun can render trout irreversibly unconscious and combinations of electrical parameters that stun trout immediately without damaging body composition have been identified. Pre-slaughter electrical stunning has also been shown to be effective for eels, salmonids, and catfish if promptly slaughtered.

The electric method has been shown to induce irreversible unconsciousness with a 1 second application of correctly selected electrical parameters; thus its instantaneous nature has appeal from a humane slaughter perspective. On the other hand, as quick as the application may be, fish have been reported to show violent behavioral reactions, muscle blood spots and fractured vertebrae when subjected to electricity. So although the electric method may be considered more humane when compared to some other slaughter methods such as asphyxiation, it is not a method without drawbacks. Also of potential concern is that there is little publicly available information comparing the electrical stun parameters used on commercial slaughter facilities to those researchers have found to be most humane. Therefore it remains uncertain whether slaughter facilities are actually employing electrical settings conducive to producing effective stuns.

Another advantage of a well-designed and operated electrical system is that it can eliminate or significantly reduce both stressful pre-slaughter handling and the need for removal from water. For example, methods such as asphyxiation in air or ice require fish to be removed from water; bleeding and percussive stunning, require fish to be removed from water and also physically restrained and handled during the process. With the electrical system, large numbers of fish can be slaughtered and processed with minimal handling.

Although electrical stunning is by no means a universally or commonly employed method, researchers including Lines et al. believe that “[t]he UK trout industry appears to be moving towards electric stunning as its
preferred slaughter method.”140 This is a welcome change, as the use of electricity can be a more humane and efficient alternative to other methods.141

Pre-Slaughter Sedation with Anesthetic

A pre-slaughter sedative with the product name AQUI-S is currently in use for salmon in Chile, Australia, Korea, Costa Rica, Honduras, and New Zealand.142 The sedation calms the pre-slaughter stress response in fish, but does not stun or kill the animals. After the fish are sedated, they must then be properly stunned and/or killed. The sedative effect of AQUI-S does not appear to be stressful to most fish, and sedated fish show significantly less distress when they are removed from the water for stunning.143 However, EU legislation prohibits the use of anesthetics for fish slaughter144 as “[b]arriers to the use of this technique in UK include the cost of overcoming the legislative requirements to introducing a new medication and the possible public response to eating fish that could be perceived as having been poisoned.”145 From an animal welfare perspective, however, pre-slaughter sedation with anesthetic is worthy of investigation.

Conclusion

Wrote Håstein \textit{et al.}:

Various methods are used to slaughter fish… and there is no doubt that many of them can be considered totally unsatisfactory from an animal welfare point of view… The guiding principle for optimal slaughter is to avoid unnecessary stress and pain to the animal during the slaughtering process.146

Following this basic guideline, many of the common methods for stunning and slaughtering farmed fish are unacceptable, including asphyxiation in air147 or on ice148,149,150, live chilling151, carbon dioxide152,153, live chilling with carbon-dioxide stunning154, and bleeding without prior stunning.155 Given the research results and systems presently available, percussive and electrical stunning, when appropriately applied, appear to be among the least aversive methods for slaughtering fish.156,157

Innovations may offer alternatives, including combining methods in order to stun and kill quickly, efficiently, and without causing undue suffering. In Norway, for example, a system is reportedly in development whereby salmon are electrically stunned and, before they can regain consciousness, are quickly subjected to percussive stunning after which they undergo exsanguination by gill-cutting.158 Prototype equipment for percussive and electrical stunning systems has recently become available, and some salmon processors, after performing trials, believe it to be economically feasible for large producers.159

Fish welfare is a young field but has growing interest. “In summary, … [Håstein \textit{et al.}] believe that it is essential to improve the welfare of poikilothermic animals by… developing a more humane technology…”160 Indeed, most research has concentrated on salmon and trout, providing little study on the impact of current slaughter methods of more newly farmed aquatic species such as cod and haddock.161 However, additional scientific study should aid in the development and improvement of more humane slaughter methods for all intensively farmed fish, regardless of species.162

\footnotesize{\begin{itemize}
\end{itemize}}

An HSUS Report: The Welfare of Farmed Fish at Slaughter | Prepared by Dr. Yue

The Humane Society of the United States is the nation’s largest animal protection organization—backed by 10 million Americans, or one of every 30. For more than a half-century, The HSUS has been fighting for the protection of all animals through advocacy, education, and hands-on programs. Celebrating animals and confronting cruelty. On the Web at humanesociety.org.