An HSUS Report: The Welfare of Piglets in the Pig Industry

Abstract

Pig production has changed dramatically over the last several decades, and most piglets are now raised on industrialized commercial operations that confine thousands of animals on one site. In these facilities, piglets are born and reared under conditions that dramatically contrast with the natural environment they are biologically adapted to fit. In nature, a mother sow builds a nest of twigs and leaves for the birth of her litter, and, after several days, the piglets gradually begin to leave the nest, explore their environment by rooting and nibbling, and slowly integrate into a larger family group. Piglets on commercial production facilities, however, are confined to barren, metal farrowing crates. Shortly after birth, they are subjected to a number of painful mutilations, including teeth clipping, tail docking, and ear notching, and male piglets are also castrated. All of these operations are routinely performed without the benefit of any pain-relieving anesthetics or analgesics. Piglets are weaned at an unnaturally early age, at a time when they would normally nurse frequently and depend on the mother sow for protection. Lack of outlets for normal exploratory nibbling, chewing, rooting, and foraging behavior, combined with early weaning practices, may lead to the development of abnormal oral behavior, such as tail biting and belly nosing. Early mortality is commonly high. Each of these issues is a highly significant animal welfare problem in need of immediate redress.

Introduction

The raising of pigs for meat in the United States has become increasingly concentrated into fewer, larger production facilities, where the animals are confined in steel-fixtured pens inside warehouse-like buildings with concrete floors. In just the last 15 years, the number of facilities housing thousands of pigs has increased, while the number of small farms raising fewer than 100 pigs has declined sharply.

<table>
<thead>
<tr>
<th>Year</th>
<th># of pigs slaughtered</th>
<th># of operations by size†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1-99 pigs</td>
</tr>
<tr>
<td>1993</td>
<td>93,296,000³</td>
<td>131,160</td>
</tr>
<tr>
<td>1998</td>
<td>101,194,000⁴</td>
<td>61,730</td>
</tr>
<tr>
<td>2003</td>
<td>101,043,000⁵</td>
<td>44,490</td>
</tr>
<tr>
<td>2008</td>
<td>116,559,000⁶</td>
<td>50,680</td>
</tr>
</tbody>
</table>

In facilities specially designed for birthing, piglets are born to sows who are commonly confined in farrowing crates. These crates are typically 1.5 m wide by 2.1 m long (5 by 7 ft), and have slotted floors. Straw or other bedding is not usually provided, except occasionally in older buildings. These metal cages restrict the sow to a smaller portion of the crate, measuring 61 cm (24 in) wide, and prevent her from accessing the brooder area. The crates are designed so that the piglets are able to nurse from their mother between metal bars. A heat lamp

³ For purposes of this report, “pig” and “pigs” refer to any porcine animal of all ages and weight classes.
in the brooder area at the opposite side of the enclosure from the sow provides warmth to the piglets, and draws them away from the sow. Slotted floors are used to facilitate the collection of manure into a pit below the building.5

After the piglets are weaned and removed from the farrowing crate (detailed below), they are commonly confined in a “nursery unit” until they reach 18.1-27.2 kg (40-60 lb), at approximately 9 weeks old.9,10 Nursery facilities are highly insulated to maintain heat and are mechanically ventilated throughout the year. Pen sizes vary but might typically measure 2.4 by 3.0 m (8 by 10 ft). Composed of metal panels and plastic slatted flooring, each pen of this size holds approximately 20 pigs. “Big-pen systems,” however, each confining groups of 50-200 nursery pigs, have been developed. Feed and water are often delivered automatically. Following the nursery phase, piglets are moved to growing/finishing facilities, where they remain until they reach slaughter weight.11,12

While the commercial production environment may protect piglets from temperature extremes and non-human predators, the quality of life for animals in these artificial and barren conditions is a serious welfare concern. In the confines of the industrial production facilities, pigs are denied access to pasture, unable to engage in most natural behavior, at times exposed to very poor air quality, and routinely subjected to management practices that involve painful or distressful procedures. Numerous scientific research reports confirm the common-sense notion that the welfare of young pigs is severely compromised by industrial pig production methods.

Piglet “Processing”

Shortly after birth, newborn piglets are “processed” in a series of painful mutilations. Each procedure is done by barn staff, rather than by trained veterinarians, and pain-relieving analgesia or anesthesia is rarely used.13,14,15 To prevent anemia and improve survival, most piglets reared indoors must also be given 1-2 iron injections during processing. In contrast, piglets raised outdoors appear to ingest enough iron from the environment so as not to require supplementation.16,17

Castration

Castration is the surgical removal of the testicles, and the procedure is performed in order to prevent “boar taint,” the taste and odor characteristic of sexually intact, mature male pigs, as well as to prevent aggression and reduce handling problems.18 In the United Kingdom and Ireland, male pigs are slaughtered at a lighter weight, before they reach the age after which boar taint becomes problematic.19 However, in most countries nearly all piglets are castrated during the first days or weeks after birth. During the procedure, the piglet is restrained to minimize movement. He is held upside-down between the handler’s legs, placed into a v-trough, or put into a commercially available restraining device.20 The scrotum is cut with the hooked blade of a surgical scalpel, and the exposed testicles are pushed through the incision and are cut or pulled free of connecting tissue.21,22

Physiological and behavioral lines of evidence clearly demonstrate that castration is painful.23,24 Piglets show an acute physiological stress response to castration. The procedure induces significant increases in cortisol,25,26 adrenocorticotropic hormone (ACTH), and lactate compared to control animals who are handled but not castrated,27 and also causes an increase in heart rate compared to piglets given an anesthetic for the surgery.28 One study, however, failed to find a clear effect of castration on urinary corticosteroids and catecholamines.29

Behavioral studies corroborate the physiological evidence. During the procedure, piglets show significantly more escape attempts during castration than when simply held and restrained.30 Studies have identified differences in standing, sitting, walking, lying, and nursing behavior between groups of castrated and uncastrated piglets.31,32,33,34 Newly castrated piglets are more inactive and exhibit prostration, stiffness, and trembling. They are less social and tend to isolate themselves from group mates. Scientists have documented behavioral differences they interpreted as indicating the presence of pain (e.g., rubbing and scratching the rump and wagging the tail) for up to four days following the castration procedure.35
Piglets squeal loudly when castrated, but because they also call intensely when simply restrained, scientists studying vocal evidence of pain validated the use of piglet calls in 1998 by recording and digitizing vocalizations so that they could be further analyzed for statistical differences in call rate, duration, and frequency. Multiple studies have demonstrated that compared to sham castrated piglets (who were held and restrained, but not subjected to the actual surgical castration procedure), piglets undergoing castration display a greater vocal response, including more high frequency calls, longer call duration, and greater peak vocal frequency. A 2003 study published in the *Journal of Sound and Vibration* classified the vocalizations of piglets during restraint and castration, and reported a significant increase in the call type they termed “screams” when piglets were castrated without anaesthesia.

The fact that pain-relieving medications reduce the response to castration is unassailable evidence that the procedure hurts. The heightened vocal response to castration without anaesthesia and other behavioral changes induced by castration are diminished by providing a local anesthetic. The nociceptive response—as indicated by changes in pulse rate, electroencephalogram (EEG) power, and blood pressure—is also enhanced when piglets are castrated without anesthesia.

It has long been assumed that young animals have reduced ability to feel pain. However, the strong behavioral responses resulting from castration are not reduced by castrating animals at a younger age, nor is the cortisol response diminished. Castration at one day of age has such a profound effect that piglets in one study had lower weights at weaning compared to those who were not castrated until they were two weeks of age. Indeed, in the human literature, there is growing concern that pain experienced by infants may have long-term adverse effects. However, in another study, the cortisol response to the stress of handling, whether the piglets were castrated or not, was lower at 3 days of age compared to 6, 9, or 12 days of age. Thus, castration at a very young age may improve welfare (by reducing handling stress), but not because the procedure is less painful to neonatal animals.

Due in part to animal welfare concerns, many countries are shifting away from castration of unanesthetized piglets. For example, immunocastration is now approved as an alternative to surgical castration on pig production operations in Switzerland and is being used in Australia, where a commercial vaccine (Improvac) is available. This immunization against the hormone GnRH effectively inhibits the development of the genital tract and reduces the production of reproductive hormones. Additionally, Switzerland and Norway have enacted a legislative ban on the castration of pigs, and in the Netherlands, supermarkets and fast-food chains McDonald’s and Burger King are no longer selling products from pigs castrated without anesthesia pain relief.

Given that the common practice of castrating unanesthetized piglets without analgesia is painful, the European Commission has financed a scientific and consumer investigation. The PIGCAS project, a multi-year, multi-organizational effort, will review current practices and potential alternatives, among other issues, and the results will form a basis for new European Union decisions on piglet castration policy and regulation. Research is underway to further test and refine pain medication for piglets, in the hope of identifying protocols that are practical for use on the farm, adhere to regulatory requirements that differ between countries, and meet animal welfare expectations.

Needle Teeth Clipping

The needle teeth are eight small, tusk-shaped teeth: four on the top and four on the bottom. The rationale for clipping the needle teeth of piglets is to prevent injury to the sow’s teats when her offspring nurse, as well as to prevent facial injuries to piglets as they compete for access to teats. In this procedure, approximately one-half of each needle tooth is cut off using wire cutters or other sharp cutting tool, or the teeth may be clipped to the gum line.

Research on this mutilation is plentiful, and evidence suggests that clipping the teeth is painful. The procedure can expose the pulp cavity to infection, clipped teeth may fracture and bleed, abscesses may form, and the
gums may be damaged. Clipped piglets display teeth champing following the procedure and spend more time sleeping, a possible indication of sickness due to infection of mouth injuries. Although one study did not find physiological evidence that clipping the teeth is stressful, as measured by plasma cortisol, ACTH, glucose, and lactate, piglets have a measurably greater vocal response when they are handled and their teeth are clipped as compared to when they are handled alone without teeth clipping. Further, significant changes in skin temperature, indicating activation of the sympathetic nervous system (another measure of stress), have also been recorded in studies of teeth clipping.

Based on differences in study results, scientific opinion differs on whether teeth clipping is justified. While studies have confirmed that clipping the teeth does reduce the facial lesions of piglets, the results of research on reductions in mammary lesions are inconsistent, with some showing fewer scratches to the teats from clipped versus intact piglets, small differences depending on the number of days since birth of the litter, or no effect of teeth clipping on damage to the udder at all. At least two studies have shown that piglets with intact teeth may disturb the sow more and thus increase their risk of being laid on as she changes position, while another study reported greater mortality in litters of teeth-clipped piglets from young (first parity) and old (6th or greater parity) sows, and no difference in mortality for all other litters. Even though clipping the teeth can reduce facial injuries, some scientists have cautioned that this benefit has to be weighed carefully against the pain and damage caused to the teeth. However, other studies conclude that the possible reduction in piglet mortality, facial and udder damage, and disturbance of the sow by piglets with sharp teeth are important reasons to continue the teeth clipping practice.

The grinding, rather than clipping, of teeth has been considered, using an electric or battery-operated rotating grindstone. Experiments have demonstrated that grinding the teeth is an effective method for reducing the facial lesions of piglets caused by their littermates, but the results of studies that investigated damage to the teeth and gums are mixed. In a detailed histological examination of clipped, ground, and intact teeth, researchers reported that exposure of pulp cavity, pulp inflammation, and abscess formation appear sooner and are more frequent in clipped teeth compared to those shortened with a grindstone. However, the study also reported a greater percentage of ground teeth with signs of necrosis compared to clipped or unclipped teeth. The study’s authors postulated that the increase in temperature caused by the motion of the grindstone on the teeth promotes cell death and tissue lysis, leading to pulp inflammation and finally to necrosis. Grinding the teeth takes longer than clipping them, exacerbating the stress of handling. Further, a 2004 study found that grinding the teeth resulted in more damage to the gums than clipping them, but the researchers reported that this may have been due to the problems with the design of grinder used in the study: as the battery deteriorated, the grinding slowed, which resulted in more gum damage; the grinder was reportedly difficult to use; and the machine at times caught piglets’ tongues or gums.

Despite shortcomings of teeth grinding, some researchers have concluded that it is a preferable method to teeth clipping, as it may be less irritating or painful, causes fewer injuries to the mouth and teeth, and results in a less pronounced inflammatory response. However, other scientists contend clipping is best, because it can be done more quickly, lowers piglet mortality in some studies, and reduces facial lesions compared to grinding the teeth. Further, it has been proposed that piglets with clipped teeth are less likely to disturb the sow compared to those with intact or ground teeth.

Other potential alternatives to fully clipping the teeth of piglets are partial tooth clipping and selective tooth clipping. It has been shown that removing one-third of the tooth, rather than fully clipping to the gum line, reduces the severity of facial lesions inflicted on other pigs, though the one published report did not measure damage to the teeth or to the sow. With selective tooth clipping, the smallest piglets in the litter are not clipped, leaving all of their teeth intact, thereby giving them an advantage in competing for access to the mother sow’s teats. One study found that the practice of selectively leaving the low-birthweight piglets’ teeth intact resulted in lower mortality for these animals if they were born in large litters, yet increased mortality of higher-birthweight piglets in these same litters, resulting in no overall difference.
Given the scientific uncertainty over the welfare benefits and assaults of these varied practices, more inquiry is necessary as the sole undeniable fact is that teeth clipping is painful.

Ear Notching

Record-keeping is important to the producer, and ear notching is practiced to permanently and inexpensively identify each piglet. The procedure is usually done with a “V-notcher,” a tool that cuts out a triangular section of flesh from the ear, measuring 4.8-6.35 mm (0.19-0.25 in). If the procedure is delayed, a V-notcher that removes larger pieces, 12.7 mm (0.5 in) of the pig’s ear, may be used instead on older animals. The ears may bleed after they are notched and, if the size of the cut-out flesh is too large, the ear can also tear.

There has been very little research assessing the painfulness of ear notching, but two studies report behavioral differences between piglets who were ear notched and piglets who were similarly held and restrained, but did not undergo the actual ear-notching procedure. The piglets who were ear notched displayed more grunting vocalizations, head shaking, squeals, and escape attempts.

There are alternatives to ear notching, but each has associated problems: Ear tags can get torn out and lost, tattoos can be difficult to read, and transponders may migrate or be lost if not injected properly. While ear tagging causes a smaller wound and is faster than ear notching—and thus likely causes less handling stress—it is not pain-free. Electronic tracking systems using microchips are being tested in Europe and the United States, and if the transponders can be prevented from moving, these may be a more effective method for identifying and storing information about each pig as well as a more humane alternative to ear notching in the future.

Tail Docking

The tails of young piglets are docked to prevent the development of abnormal tail-biting behavior. Tail biting is a serious welfare problem that may begin to occur shortly after weaning, but once established, becomes more common. Tail biting is painful for the recipient and can lead to infection and abscess formation.

To prevent tail-biting behavior, the tails of young piglets are often cut with wire cutters, an electric cauterizing blade, a heated docking iron, or a sharp knife, leaving a 1.9-2.54 cm (0.75-1.0 in) stub. There is also a non-surgical method of tail docking in which a tight rubber ring is placed around the tail.

It has been demonstrated that tail docking is effective in reducing the occurrence of tail-biting behavior, but the procedure is acutely painful and may cause chronic pain if a neuroma forms. Peripheral nerves can be traced all the way to the tip of the tail, suggesting that the entire appendage is sensitive. During the procedure, the piglets reportedly scream, squeal, grunt, attempt to escape, struggle, wag their tail, or clamp it between their legs. Compared with sham-operated piglets who do not have their tails docked, those who are mutilated have higher peak vocal frequencies during the procedure. Following tail docking, piglets may scoot on their posteriors and will spend more time sitting down compared to undocked piglets.

Evidence that tail docking is stressful is somewhat contradictory. Amputation with a docking iron does not produce a rise in plasma cortisol, ACTH, lactate, or β-endorphin, but conversely, at least one study found that white blood cell counts—another physiological indicator of stress—may be reduced. In studies measuring the effect of blunt trauma using cutting pliers, a stress response (as measured by increased blood cortisol levels and lowered white blood cell counts) was reported in one study but not in another that measured cortisol and β-endorphins. Evidence that tail docking is stressful is somewhat contradictory. Amputation with a docking iron does not produce a rise in plasma cortisol, ACTH, lactate, or β-endorphin, but conversely, at least one study found that white blood cell counts—another physiological indicator of stress—may be reduced. In studies measuring the effect of blunt trauma using cutting pliers, a stress response (as measured by increased blood cortisol levels and lowered white blood cell counts) was reported in one study but not in another that measured cortisol and β-endorphins.

The conditions in which piglets are raised in industrial animal production facilities is one of the underlying causes of abnormal tail-biting behavior: The environment is barren and uninteresting, typically providing young pigs little or no substrate for display of biologically driven investigatory behavior, so they often begin to explore and chew pen fittings and their group mates, including their tails. Although tail biting is sporadic and
unpredictable, and the causal basis is undoubtedly a complex interaction of multiple factors including crowding, genetic predisposition, management, and nutritional factors, environmental enrichment can help prevent the development of tail biting as described in the following section. Successful control of tail biting with the use of environmental enrichment is a much more humane alternative to tail docking.

Housing Conditions

Naturally curious and playful, piglets in industrial production facilities are deprived of the complex, engaging environment they would normally encounter in a more naturalistic setting, and this has a profound effect on their behavioral development. In an outdoor environment, piglets are born in a nest of twigs and grass that was carefully constructed by the mother sow. Piglets begin rooting, chewing at objects, and sniffing the substrate within days of their birth, and begin to follow their mother out of the nest at about ten days of age. They are active and playful, and grow to spend more than half of their daily time budget foraging and exploring their environment by Grazing, browsing, and turning the soil using the highly sensitive disc of their snout. It is common for piglets to root, bite, chew, and sniff at objects and the ground, and to collect, move, and manipulate food items.

Without opportunity to display normal rooting, chewing, and manipulative oral activities, piglets in industrial confinement environments often develop abnormal behavior. They may repetitively nose other pigs or parts of the pen, frequently chew the ears and tails of their companions, or simply spend more time inactive.

Conversely, a plethora of studies have demonstrated that pigs in a more enriched environment, in which they are provided with a rooting substrate such as straw or peat show less harmful social behavior, including tail biting. Although occasional reports note tail-biting outbreaks even in straw-bedded, outdoor environments, it has been suggested that recurring abnormal behavior commonly seen in industrial production operations is not usually displayed by pigs who are given adequate space in more naturalistic enclosures.

Poor rearing environments can also lead to greater levels of aggressive behavior and are thought to cause chronic social stress in adult animals. A 1996 study found that the onset of puberty was delayed in subordinate females born and reared to six weeks of age in farrowing crates compared to those with access to a one-half acre outdoor enclosure. Researchers also found that subordinate pigs with access to the outdoor environment had greater daily weight gain and less stress as indicated by physiological measures of cortisol. A study published in 2000 also found that growth rates were improved in an environment enriched with rooting material and extra space compared to the standard, barren conditions of the industrial production setting.

The prevalence of play behavior can be used as an indicator of suitable environmental conditions. Piglets show peaks in “trotting and scampering” between 2-6 weeks of age, suggesting that space for exuberant behavior is especially important during this stage of development. Although piglets do show playful behavior even in industrial production settings, piglets in an enriched environment play more than those kept in the typical, commercial conditions.

Scientists have suggested that the needs of young animals are simply not being met in the confines of the barren, commercial production facility. A more enriched environment would greatly improve the welfare of young pigs; simply providing straw bedding would supply an outlet for natural rooting and exploratory behavior, and increase activity levels, while simultaneously decreasing the incidence of belly nosing, aggression, chewing on and licking pen mates, and often lowering the prevalence of tail-biting. Additionally, straw would provide thermal and physical comfort and could reduce the incidence of abrasive skin lesions. Scientists have suggested that animals may have behavioral needs, and that suffering may result if animals are unable to engage in certain activities. Increased attention to these behavioral needs would greatly improve the welfare of young pigs in commercial production.

Air Quality
The air quality in industrial production facilities is often poor and is a welfare concern for young pigs. Biophysicist Christopher Wathes of the Silsoe Research Institute has stated that the air in weaning facilities "seethes with a dense miasma of bio-aerosols and gases." Some of the aerial pollutants to which he refers include dust, endotoxins, and ammonia. Experiments have shown that pigs can detect and will avoid atmospheres that contain ammonia, even at concentrations as low as 10 parts per million (ppm), and that they prefer fresh air.

Poor air quality may increase the incidence and severity of certain respiratory diseases. Infectious atrophic rhinitis is a disease of pigs caused by bacterial infection of the upper respiratory tract. Initial colonization of the nasal mucosa by pathogenic bacteria is thought to occur in young pigs, and, by the time they reach slaughter weight, infected animals have inflamed nasal passages and atrophy of turbinate bone, which can lead to facial deformity in severe cases. Aerial concentrations of dust and ammonia in farrowing facilities are correlated with this bone atrophy and disease severity. Poor air quality may also lead to other diseases, including enzootic pneumonia, porcine reproductive and respiratory syndrome (PRRS), and swine influenza.

Mortality

Piglet mortality is often high. The May 2007 issue of *National Hog Farmer* reports an average preweaning mortality rate of 13.2% with a range of 9.5-17.2% on a sampling of U.S. farms. According to a 2006 USDA survey of 92% of U.S. producers, an average of 11.5 piglets are born per litter, but only 10.5 are born alive and a further 1.1 die before weaning.

Piglet mortality is often attributed to accidental crushing by the sow. Sows are normally responsive, attentive mothers who will defend their piglets when they are threatened, but because they are bred for producing large litters of fast-growing piglets with high muscle (meat) mass, sows also grow to unprecedented size. As such, the weight discrepancy between the sow and her piglets poses a danger: a neonatal piglet may weigh only 1 kg (2.2 lb), while a breeding sow may reach about 250 kg (551 lb). A misplaced step or change in posture by the sow can easily injure or kill a newborn.

Compounding this problem is selective breeding for increased litter size. Large litters result in more undersized piglets at birth, unintentionally resulting in lower survival rates. Low birth-weight piglets are more likely to be crushed, but in addition, piglets in large litters face increasing competition for access to the udder for nursing. Another contributing factor to poor survival rates is reduced mothering ability, another unintended side-effect of genetic selection for increased litter size.

Piglet mortality is not only caused by accidental crushing, however, but also by a host of other interrelated problems including diarrhea (scours), deformities, respiratory afflictions, anaemia, hypothermia, small-size/nonviability, splay-legs, disease, nervous system problems, and starvation of low-birthweight piglets who do not receive adequate milk supply. Although the U.S. Department of Agriculture reports that the percentage of total mortality caused by trauma from being laid on by the sow was 45.6% in 2006, factors often interact and it may not always be possible to determine the cause of death for each piglet. As well, not all farms use the same criteria for classification of mortality, which makes interpretation of the data challenging. For example, in some cases, low-viability piglets may be so weak that they are unable to access a teat to nurse and would die from lack of nutrition. If, however, they do not have the strength to avoid the sow when she shifts her weight, they can be accidentally crushed, and their deaths may be categorized as a result of crushing, rather than as death caused by starvation. Thus, the number of deaths due to crushing by the sow may be overestimated.

Supervision of sows and piglets, especially during the birthing process, and care for low-viability piglets can substantially reduce the mortality rate including the number of stillborn piglets. An attendant can remove mucus and placental debris from the mouth and nose, dry off the piglets, and stimulate breathing. They can also prevent the newborns from becoming chilled, and can ensure that piglets receive colostrum (the first milk produced by the sow which contains antibodies important for protecting the piglet from disease).
Facilitation of milk intake to prevent malnutrition is key for reducing mortality. According to a report for the European Commission written by the Scientific Veterinary Committee, an independent group of experts on animal behavior and welfare, “milk transfer should be considered equally as much as methods to reduce crushing.”

Another possibility for reducing piglet mortality is to selectively breed sows for desirable maternal characteristics. Some sows are more responsive than others to the distress vocalizations of their piglets, and there is considerable variability in the likelihood that individual sows will crush their piglets. This suggests that there is potential to selectively breed sows for improved mothering characteristics. However, the use of farrowing crates may be an obstacle to selective breeding programs for improved maternal ability, because maternal behavior is so restricted that good maternal traits are less easily detected. Thus, farrowing crates are thought to have relaxed selection for good maternal behavior.

While several studies have shown that farrowing crates can be used to reduce crushing mortality due to the fact that the sow is physically unable to access the brooder area, their use restricts the sow’s movement to such a degree that it is a considerable welfare issue. Further, a large survey in Switzerland, where restrictive farrowing crates are no longer permitted, shows that overall piglet mortality rates have not increased. In 1997, the Swiss Animal Protection Ordinance was revised, requiring that the mother sow have enough space to turn around freely. Since this law was enacted, many farms began to introduce loose farrowing systems. A survey of 482 farms using crates and 173 farms using loose housing systems found that the farrowing system had no overall effect on piglets losses. Although more piglets were crushed in loose housing systems, fewer piglets died of other causes, and the overall litter size at weaning was 9.6 piglets for both systems. Some alternative farrowing environments that do not severely restrict movement of the sow, but still protect piglets from being crushed include the ellipsoid farrowing crate, the sloped farrowing pen, and English-style, outdoor farrowing huts.

Early Weaning

Under commercial production conditions, the weaning process is very different than that observed in more naturalistic environments. Intake of solid feed is normally low until piglets are about five weeks of age. Naturally, the diet of piglets changes gradually, and they continue to nurse even as their reliance on milk slowly shifts to other feed types. There are reports of weaning being complete in as little as 60 days, but typically piglets are much older, up to approximately 18 weeks of age.

In contrast to the progressive change in maternal dependence during the natural weaning process, in commercial pig production operations, weaning is an abrupt, traumatic event. Young piglets are often weaned at just 2-4 weeks of age and sometimes even younger, at as little as seven days old. After they are separated from the mother, they are transferred to a nursery facility, as discussed above. Weaning imposes a number of simultaneous stressors including the sudden change in environment, diet, and social group composition, as well as maternal deprivation, leading to possible "psychological strain." Although piglets may be given "creep feed" (access to solid feed before weaning), they consume very little, relying mostly on suckling milk from their mother for nutrition. As such, their abrupt and premature removal for artificial weaning is commonly practiced at a time when they would normally nurse frequently and maintain a strong social attachment to their mother.

Piglets react strongly when they are separated from their mother. When removed from the sow and placed into a new environment at weaning, piglets often vocalize, calling in grunts and high-pitched squeals, and these vocal reactions are greater when they are hungry or underweight, or when they are weaned at three weeks of age compared with four or five weeks. Sows respond to the vocalizations of their piglets by approaching and

‡ For more information, see “An HSUS Report: The Welfare of Sows Used for Breeding in the Pig Industry” at www.humanesociety.org/assets/pdfs/farm/welfare_breeding_sows.pdf.
calling in return. On the first day after separation from the sow, early weaned pigs are more active and have difficulty resting. The restlessness, distress call vocalizations, and escape attempts—presumably in an effort to regain contact with their mother—are behavioral signals that scientists have attributed to emotional distress.

In industrialized agriculture, the practice of prematurely weaning pigs developed largely as a means to increase productivity and efficiency—i.e., the sow can be re-breed sooner, resulting in more pigs born per year. Economic pressures in commercial production require maximum “sow output,” as one pig science text book explains:

Reducing lactation length is the most effective way in which to increase sow productivity. With an adequate management program, weaning pigs at 2.5 to 4 weeks of age can be the regular practice.

Piglets are also prematurely weaned in commercial production to minimize their exposure to disease. In segregated early weaning (SEW) programs, piglets weaned at 21 days or younger are subsequently housed at a different site or the sow is removed to another site, while the piglets are left in their birth place. Respiratory diseases can be problematic in intensive production settings, and SEW can prevent transmission of pathogens from the sow to her piglets. However, there is evidence that if herds are in good health, there may be little benefit to using these programs.

Although there are disease control advantages to SEW, there are also health risks, and it has been postulated that early weaning strongly interferes with the nutritional and behavioral development of the pig. The sudden shift from mother’s milk to solid feed causes an abrupt, profound change in digestive physiology, and, in contrast to older, gradually weaned pigs, early weaned pigs often have low initial feed intake and underdeveloped intestinal immunity. Despite provision of highly digestible feed, these animals experience a growth setback, which is more severe when weaned at a younger age. Inadequate feed intake may affect intestinal morphology and contribute to gut inflammation, compromising structure and function. Early weaning also decreases enzyme function in the small intestine. Thus, early weaned piglets are predisposed to problems with dehydration, diarrhea, enteric disease (infection of the gut), and malabsorption (difficulty absorbing nutrients). Allowing piglets to suckle for a longer period would allow more time for maturation of the gut and improve gut immunity, as well as help them better digest and absorb nutrients, improving overall health.

Additional physiological and behavioral changes further indicate that early weaning may reduce the welfare of piglets. Immunological and hormonal investigations reveal that early weaned piglets are stressed. The ratio of neutrophils to lymphocytes, an immunological measure of stress, is higher in piglets weaned at two weeks of age compared to four weeks. Measurements of plasma and urinary concentrations of the hormone cortisol corroborate this result, also providing evidence that premature weaning is stressful.

Behavioral changes indicative of reduced welfare include increased aggression among early weaned piglets, intense vocalizations upon removal from the family unit, and the development of abnormal oral behavior. When different piglet litters are allowed to mix freely in a communal area prior to weaning, there is little fighting. However, when piglets are introduced abruptly to unfamiliar pen mates in the manner practiced commercially, weaning aggression levels can be high. During the first days after weaning, early weaned piglets may bite, fight, and attack their litter mates, and aggression levels are higher when piglets are weaned at 12 or 21 days compared to 42 days of age.

It is well-established that early weaning contributes to the development of abnormal oral behavior. Early weaned piglets may engage in flank sucking nosing, biting, and chewing on other pigs or objects. Belly-nosing, a stereotypy—an abnormal, repetitive behavioral pattern that stems from an “environmental deficit causing frustration or [Central Nervous System] CNS dysfunction”—has also been documented in early-weaned piglets. Nursing piglets perform massaging and nosing movements on the sow’s udder to encourage milk secretion, sometimes falling asleep next to her after feeding. However, when piglets are weaned early, they often redirect this massaging and nosing behavior to the belly of a pen-mate instead. Many studies show that
the earlier piglets are weaned, the more likely they are to develop stereotypic belly-nosing, and the more likely it is to persist. While there has been little research on the nature of the bond between mother pigs and their offspring, studies of other mammalian species suggest that the mother is more than just a source of warmth and milk to the young, which may be part of the reason premature separation can have long-term effects on behavioral development. Studies have further demonstrated that early maternal deprivation may interfere with the psychobiological and neuroendocrine systems of the maturing brain. For primates and rodents, there is accumulating evidence that early traumatic experiences can alter brain function in a way that causes maladaptive changes in the animal’s ability to respond to stress. For piglets, it is known that abnormal, repetitive oral behavior is associated with altered neurotransmitter activity in the basal ganglia of the brain. Early weaning of piglets also affects the expression of certain enzymes, hormones, and hormone receptors that regulate the stress response in the hippocampal region of the brain. These changes may underlie cognitive and behavioral defects of adult animals.

Conclusion

The monumental changes in the size and intensity of animal production systems from small, diversified farming enterprises to massive confinement operations have had an immense impact on the welfare of pigs in agriculture. Traditional husbandry practices have given way to the industrial model of production, and the sentient nature of the animals used has gone unrecognized. Managed simply as production units, profitability has taken precedence over animal welfare. Farmed animal production industries often claim that their practices should be based on science and that animals in industrial operations have good welfare. However, science has clearly demonstrated that: 1) castration, amputation of the tail, and clipping the teeth are painful mutilations; 2) rearing young pigs in an impoverished, barren environment often leads to the development of abnormal behavior; 3) the air quality in industrial production environments is poor; and 4) early weaning is stressful and results in digestive, behavioral, and neurological maladies. All of these practices clearly result in poor welfare of the animals, yet they persist, demonstrating that science is not what shapes conventional production practices.

While science is important for establishing factual information about animal welfare, such as the suitability of one environment over another, for example, the ultimate decision to reject or accept such a production practice, is an ethical one. Baby pigs have behavioral and social needs that are not met in the restrictive, barren environments provided by industrial agriculture. At the least, basic, minimal standards for their care and treatment are in order, and more thorough consideration of the ethical implications of current practices is needed in the pig production industry, with greater emphasis on the well-being of the animals.
